Chem. Ber. 106, 1139-1144 (1973)

1139

Die Kristallstruktur von Diphenylphosphinsäure

Dieter Fenske*, Rainer Mattes, Jürgen Löns und Karl-Friedrich Tebbe

Anorganisch-Chemisches Institut und Institut für Mineralogie der Universität Münster, D-4400 Münster, Gievenbecker Weg 9

Eingegangen am 18. Dezember 1972

Diphenylphosphinsäure, $C_{12}H_{11}O_2P$, kristallisiert mit 4 Formeleinheiten pro Elementarzelle in der Raumgruppe $P2_1/c$. a = 11.441(4) Å, b = 6.059(3) Å, c = 15.722(7) Å, $\beta = 99.93(3)^\circ$. Die einzelnen Moleküle sind in Richtung der zweizähligen Schraubenachsen durch Wasserstoffbrückenbindungen der Länge 2.468(8) Å zu Ketten verknüpft. Die Bindungsabstände d(P=O) bzw. d(P-OH) betragen 1.486(6) bzw. 1.526(6) Å.

The Crystal Structure of Diphenylphosphinic Acid

Diphenylphosphinic acid, $C_{12}H_{11}O_2P$, crystallizes in the monoclinic space group $P2_1/c$ with four molecules in the unit cell. a = 11.441(4) Å, b = 6.059(3) Å, c = 15.722(7) Å, $\beta = 99.93(3)^\circ$. The molecules are linked to chains by hydrogen bonds along the twofold screw axis. The O···H-O distance is 2.468(8) Å; the P-O distances are 1.486(6) Å and 1.526(6) Å.

Bei Umsetzungen mit metalliertem Diphenylphosphin isolierten wir als Nebenprodukt Diphenylphosphinsäure $(1)^{1}$. Massenspektrometrische Untersuchungen ergaben neben der zu erwartenden Molekülmasse einen hohen Anteil des Dimeren von 1. Nach kryoskopischen Molekülmassebestimmungen ist 1 dimer in Benzol, dagegen monomer in Essigsäure²⁾. Offensichtlich ist 1 wie Carbonsäuren über Wasserstoffbrückenbindungen assoziiert. Während längerkettige Carbonsäuren auch in der festen Phase dimer sind, bilden Ameisensäure und Essigsäure im kristallinen Zustand polymere Ketten³⁾. Die vorliegende Röntgenstrukturanalyse sollte über die Art der Wasserstoffbrückenbindung in 1 Auskunft geben.

Bestimmung und Verfeinerung der Struktur

1 kristallisiert monoklin mit den Zellabmessungen

$$a = 11.441 \pm 0.004 \text{ \AA}$$

$$b = 6.059 \pm 0.003 \text{ \AA}$$

$$c = 15.722 \pm 0.007 \text{ \AA}$$

$$\beta = 99.93^{\circ} \pm 0.03^{\circ}$$

Die Zelle enthält 4 Formeleinheiten, d_4^{20} 1.38 g/cm³.

²⁾ L. D. Freedman und G. O. Doak, J. Org. Chem. 21, 1533 (1956).

¹⁾ A. Michaelis und A. Link, Liebigs Ann. Chem. 207, 204 (1881).

³⁾ R. E. Jones und D. H. Templeton, Acta Crystallogr. 11, 484 (1958), und dort zitierte Literatur.

Nach den allgemeinen Auslöschungen h0l, l = 2n+1 und 0k0, k = 2n+1 ergibt sich eindeutig die zentrosymmetrische Raumgruppe $P2_1/c = C_{2b}^5$.

Die Struktur wurde mit Hilfe direkter Methoden bestimmt. Zur Anwendung kam das von *Main, Woolfson* und *Germain* beschriebene Rechenprogramm LSAM 2⁴). Ausgehend von den 6 Startreflexen $10\overline{4}$ (E = 6.42), $11\overline{1}$ (5.63), $11\overline{2}$ (4.02), 300 (6.06), 002 (4.33) und $11\overline{4}$ (4.18) – die letzten drei Reflexe dienten zur Festlegung des Ursprungs – sowie 184 Reflexen mit E > 1.40 erhielten wir 4 Lösungen. Als richtig erwies sich die Lösung mit den besten Wahrscheinlichkeitskriterien. Die mit den *E*-Werten berechnete Fourier-Synthese zeigte die erwartete Molekülstruktur.

Die Verfeinerung des Skalenfaktors, der Ortsparameter und der isotropen Temperaturfaktoren der C-, O- und P-Atome nach der Methode der kleinsten Quadrate (volle Matrix) ergab nach 2 Zyklen R = 17.0%. Nach Anwendung der Gewichtsfunktion $w = 1/(10.0 + F_0 + 0.02 F_0^2)^{1/2}$ und anisotroper Verfeinerung fiel der Gütefaktor auf 8.9%. In einer anschließenden Elektronendichte-Differenzsynthese konnten alle Wasserstoffatome, einschließlich des an Sauerstoff gebundenen, gefunden werden. Die Verfeinerung aller Ortsparameter (auch der H-Atome, die den Temperaturfaktor des zugehörigen C- bzw. O-Atoms erhielten) ergab nach 2 weiteren Zyklen R = 7.2%.

Ergebnisse und Diskussion

Die erhaltenen Orts- und Temperaturparameter sowie Bindungsabstände und -Winkel sind in den Tabellen 1-3 aufgeführt. Eine stereographische Projektion von 1 zeigt Abb. 1 (ohne H-Atome, Blickrichtung entlang der *b*-Achse).

Im kristallinen Zustand ist **1** über Wasserstoffbrückenbindungen zu Ketten verknüpft, die sich entlang der zweizähligen Schraubenachsen in *b*-Richtung erstrecken. Die Dimensionen der Wasserstoffbrücke sind in Abb. 2 dargestellt. Der Abstand $d(O \cdots H - O)$ beträgt 2.468(8) Å und liegt damit im Bereich sehr kurzer Wasserstoffbrücken^{5,6}. Wie bei den disubstituierten Phosphorsäuren **2**⁷ und **3**⁶, deren Wasserstoffbrückenbindungen die Länge 2.494(8) bzw. 2.398(18) besitzen, steht dem aciden H-Atom von **1** nur ein Akzeptoratom zur Verfügung.

2 $(C_6H_5CH_2O)_2P$ O 3 $(p-ClC_6H_4O)_2P$ OH OH

Betrachtet man die P-O-Abstände der vorliegenden Struktur, so fällt der geringe Längenunterschied zwischen den beiden nichtäquivalenten P-O-Bindungen auf; d(P=O) beträgt 1.486(6) Å und d(P-OH) ist auf 1.526(6) Å verkürzt. Infolge der sehr kurzen Wasserstoffbrückenbindung findet offensichtlich ein gewisser Bindungsausgleich statt. Die entsprechenden Vergleichswerte in 2 betragen 1.469(5) bzw.

⁴⁾ P. Main, M. M. Woolfson und G. Germain, Acta Crystallogr. B 26, 274 (1970). Wir danken den Autoren für die Überlassung des Programmtextes LSAM, a system of computer programmes for the automatic solution of centrosymmetric crystal structures; version February 1972.

⁵⁾ J. C. Speakman, Structure and Bonding, Bd. 12, Springer Verlag, Berlin-Heidelberg-New York 1972.

⁶⁾ M. Calleri und J. C. Speakman, Acta Crystallogr. 17, 1097 (1964).

⁷⁾ J. D. Dunitz und S. J. Rollett, Acta Crystallogr. 9, 327 (1956).

Atom	_ <u>x</u>	<u>y</u>	
Р	8395(1)	6045(3)	2495(1)
0(1)	9045(4)	4369(8)	2067(3)
0(2)	8841(4)	8417(8)	2480(3)
C(1)	6885(5)	6221(11)	1961(4)
C(2)	6239(6)	8117(14)	2003(5)
C(3)	5066(7)	8231(17)	1600(5)
C(4)	4565(7)	6443(18)	1140(6)
C(5)	5187(7)	4546(17)	1094(5)
C(6)	6356(6)	4457(13)	1509(5)
C(7)	8386(5)	5308(11)	3594(4)
C(8)	8761(7)	3310(13)	3917(5)
C(9)	8767(7)	2820(15)	4786(5)
C(10)	8386(7)	4337(16)	5313(5)
C(11)	7988(8)	6348(17)	4992(5)
C(12)	7999(7)	6854(15)	4136(5)
H(2)	6710(66)	9514(159)	2358(57)
H(3)	4592(78)	9487(199)	1585(60)
H(4)	3710(76)	6647(181)	0889(61)
H(5)	4705(77)	3088(177)	0717(56)
H(6)	6774(75)	3277(151)	1516(56)
H(8)	9028(80)	2201(163)	3585(59)
H(9)	9007(78)	1314(165)	5050(59)
H(10)	8340(72)	3977(174)	5936(57)
H(11)	7632(85)	7291(178)	5404(58)
H(12)	7835(78)	8377(173)	3950(57)
H(O)	9834(68)	8914(142)	2708(53)

Tab. 1. Ortsparameter. Alle Werte sind mit 10⁻⁴ zu multiplizieren; in Klammern sind die Standardabweichungen der letzten Dezimale (n) angegeben

C457/72.Tab.1

Tab. 2. Anisotrope Temperaturfaktoren. Alle Werte sind mit 10⁻⁴ zu multiplizieren; in Klammern sind die Standardabweichungen angegeben

Atom	⁸ 11	^ß 22	^B 33	^B 12	^B 13	^B 23
Р	41(1)	247(5)	32(1)	5(2)	7(1)	1(1)
0(1)	59(3)	366(16)	44(2)	40(6)	9(2)	-2(4)
0(2)	71(4)	281(16)	55(2)	-18(6)	11(2)	13(5)
C(1)	50(5)	301(20)	30(2)	-17(8)	10(2)	6(5)
C(2)	64(6)	384(28)	54(4)	52(10)	13(4)	24(8)
C(3)	61(7)	634(40)	65(4)	97(13)	12(4)	48(10)
C(4)	57(7)	815(54)	56(4)	11(14)	-4(4)	57(12)
C(5)	70(7)	618(40)	49(4)	-59(14)	-7(3)	7(9)
C(6)	68(7)	391(25)	48(3)	-14(10)	3(3)	10(7)
C(7)	51(5)	299(19)	29(2)	-16(6)	-1(2)	2(5)
C(8)	81(7)	341(26)	49(3)	-13(11)	8(3)	11(7)
C(9)	91(8)	391(32)	58(4)	-45(12)	-6(4)	47(9)
C(10)	91(7)	568(40)	40(3)	-68(13)	1(3)	24(9)
C(11)	134(9)	621(42)	37(3)	2(1)	21(4)	-21(9)
C(12)	111(8)	394(30)	40(3)	33(12)	14(3)	7(8)
C457/72 1	ab.2					

Tab. 3. Bindungsabstände und -winkel

P-0(1)	1.486(6)	C(1)-P-C(7)	107.7			
P-0(2)	1.526(6)	O(1)-P-O(2)	116.6			
P-C(1)	1.785(7)	O(1)-P-C(7)	110.7			
P-C(7)	1.787(6)	O(1)-P-C(1)	110.3			
C(1)-C(2)	1,375(9)	O(2)-P-C(1)	103.6			
C(2)-C(3)	1.383(12)	O(2)-P-C(7)	107.9			
C(3)-C(4)	1.368(12)	C(6)-C(1)-C(2)	118.8			
C(4)-C(5)	1.361(12)	C(6)-C(1)-P	120.3			
C(5)-C(6)	1,385(11)	C(2)-C(1)-P	120.8			
C(6)-C(1)	1.366(10)	C(1)-C(2)-C(3)	120.5			
C(7)-C(8)	1,353(10)	C(5)-C(4)-C(3)	121,3			
C(8)-C(9)	1.397(11)	C(4)-C(5)-C(6)	118.6			
C(9)-C(10)	1.357(12)	C(1)-C(6)-C(5)	121.5			
C(10)-C(11)	1,366(11)	C(4)-C(3)-C(2)	119.2			
C(11)-C(12)	1.381(12)	C(8)-C(7)-P	122,1			
C(12)-C(7)	1,389(10)	C(12)-C(7)-P	118.7			
O(1)-H(O)	1,299(70)	C(7)-C(8)-C(9)	120.3			
O(2)-H(O)	1,170(70)	C(9)-C(10)-C(11)	120.1			
0(1)-0(2)	2,557(8)	C(10)-C(9)-C(8)	120.2			
0(1)-0(2)	2.468(8)	C(10)-C(11)-C(12)	119.9			
(in H-Brück	e)	C(11)-C(12)-C(7)	120.3			
		P-O(2)-H(O)	123.2			
		P-0(1)-H(0)	124.6			
		O(1)-H(0)-O(2)	176.5			
		C(8)-C(7)-C(12)	119.1			
mittlerer C-H-Abstand im Phenylring : 1.00 \pm 0.026						
Standardabweichung der Winkel an P: 0,3 ⁰						
Standardabweichung der restlichen Winkel: ca. $0,6^{\circ}.$ $\boxed{\hbox{[}2457/72.1ab.3]}$						

1.545(4) Å. In 3 (mit symmetrischer Wasserstoffbrücke) ist der Bindungsausgleich vollständig. Der P–O-Abstand beträgt hier 1.497(9) Å.

Die mittlere Länge der P-C-Bindungen beträgt 1.786(4) Å. Sie ist damit wenig kürzer als die mit den kovalenten Radien des Phosphors (1.10 Å) und sp²-hybridisierten Kohlenstoffs (0.74 Å) nach der *Schomaker-Stevenson*-Beziehung berechnete Bindungslänge von 1.80 Å.

Die Abstände und Bindungswinkel in den Phenylringen zeigen die von *Hamilton*⁸⁾ diskutierte Abweichung von der idealen Symmetrie. Dies betrifft insbesondere die Länge der Bindungen $C_{\beta}-C_{\gamma}$ und den Bindungswinkel an C_{α} .

Der Winkel P $-O(2)\cdots O(1)$ beträgt in der vorliegenden Struktur 125.0(5)° und weicht damit vom Tetraederwert ab, der bei starken H-Brückenbindungen begünstigt

⁸⁾ W. C. Hamilton, Acta Crystallogr., Abstracts of the 9th International Congress, Supplement A 28, 106 (1972).

sein sollte⁹⁾. Wie aber eine Reihe von Strukturuntersuchungen an Verbindungen mit Phosphatgruppen zeigt^{6,10)}, variiert die Größe dieses Winkels auch bei kurzen H-Brückenbindungen in einem weiten Bereich. Die von *Ferraris* und Mitarbb.¹¹⁾ angegebene Beziehung zwischen $d(O \cdots H-O)$ und dem Winkel $O \cdots H-O$ wird gut erfüllt.

Das Infrarotspektrum von 1 im Bereich $2800-1500 \text{ cm}^{-1}$ wurde bereits von *Sheppard* und Mitarbb.¹²⁾ diskutiert. Wir beobachteten in diesem Bereich 3 breite Absorptionsbanden bei 2600, 2140 und 1650 cm⁻¹ mit den Minima bei 2420 und 1920 cm⁻¹. Die Intensität der Banden, die in der Literatur¹²⁾ als A,B,C-Typ-Banden bezeichnet werden, steigt in der genannten Reihenfolge an. Dies ist nach *Claydon* und

Abb. 1. Stereographische Projektion eines Moleküls, ohne H-Atome, Blickrichtung entlang der b-Achse

Sheppard¹³) als ein Hinweis auf eine sehr starke Wasserstoffbrückenbindung anzuschen. Die vorliegende Strukturuntersuchung bestätigt diese Voraussage. Im *O*-deuterierten Derivat von 1 findet man vermutlich wegen der Überlagerung durch andere Banden nur 2 Maxima bei 1900 und 1670 cm⁻¹ mit einem Minimum bei 1795 cm⁻¹. Nach *Claydon* und *Sheppard*¹³) werden die mehrfachen Maxima der A,B,C-Typ-Spektren durch Fermi-Resonanz von vOH mit den 28OH- und 2γOH-Schwingungen

⁹⁾ J. Donohue, J. Phys. Chem. 56, 502 (1952).

¹⁰⁾ R. Liminga, Acta Chem. Scand. 19, 1635 (1965); A. Krick, P.-G. Jönsson und R. Liminga, ebenda 26, 1087 (1972), und dort zitierte Literatur.

¹¹⁾ G. Ferraris, D. W. Jones und J. Yerkes, Acta Crystallogr. B 28, 2430 (1972).

¹²⁾ J. T. Braunholtz, G. E. Hall, F. G. Mann und N. Sheppard, J. Chem. Soc. 1959, 868.

¹³⁾ M. F. Claydon und N. Sheppard, Chem. Commun. 1969, 1431.

Abb. 2. Struktur der Wasserstoffbrückenbindung

verursacht. Die Minima entsprechen dann den Frequenzen dieser Obertöne. Wir beobachteten, wie ein Vergleich des Spektrums von 1 mit dem der *O*-deuterierten Verbindung ergab, δOH und γOH bei 1180 bzw. 960 cm⁻¹, δOD bei 860 cm⁻¹, in guter Übereinstimmung mit den oben genannten Minima.

Für wertvolle Diskussion danken wir Herrn Prof. Dr. H. J. Becher. Der Stiftung Volkswagenwerk danken wir für die Bereitstellung des Diffraktometers.

Experimenteller Teil

Zur Kristallstrukturbestimmung wurde 1 nach Michaelis und Link¹⁾ hergestellt und aus Benzol umkristallisiert (Schmp. 193°). Für spektroskopische Messungen stellten wir auch die O-deuterierte Verbindung dar. Dazu setzten wir das Silbersalz¹⁴⁾ von 1 in ND₃/D₂O mit DCl um und extrahierten das gesuchte Produkt mit Benzol. Der massenspektrometrisch gemessene Deuterierungsgrad betrug 70%. Dreidimensionale Intensitäten wurden mit Hilfe eines Picker-Vierkreisdiffraktometers (Mo_{Ka}-Strahlung, Nb-Filter, $2\vartheta_{max} = 55^{\circ}$) gesammelt. Nach Mittelung über die symmetrieäquivalenten Reflexe blieben noch 1358 unabhängige Reflexe mit $I > 1.0 \cdot \sigma(I)$ übrig.

Die Gitterkonstanten wurden durch Ausgleichsrechnung über 25 indizierte Reflexe einer Pulveraufnahme (*Simon-Guinier*-Technik¹⁵) ermittelt.

Alle Rechnungen wurden im Rechenzentrum der Universität Münster durchgeführt. Auf die Wiedergabe der umfangreichen Strukturfaktortabellen wurde aus Platzgründen verzichtet. Sie werden auf Wunsch zugesandt.

[457/72]

¹⁴⁾ A. Michaelis und B. Graff, Ber. Deut. Chem. Ges. 8, 103 (1875).

¹⁵⁾ A. Simon, J. Appl. Crystallogr. 3, 11 (1970).